Radioactive dating game

Radioactive Dating Game

radioactive dating game

Feb 11, Radiometric dating methods estimate the age of rocks using calculations based on the decay rates of radioactive elements such as uranium. Understand how decay and half life work to enable radiometric dating. Play a game that tests your ability to match the percentage of the dating element that. adiometric dating methods estimate the age of rocks using calculations based on the decay rates of radioactive elements such as uranium, strontium, and.

It takes a long time to penetrate the confusion and find out what is the hard evidence in this area. In the first place, I am not primarily concerned with dating meteorites, or precambrian rocks. What I am more interested in is the fossil-bearing geologic column of Cambrian and later age. Now, several factors need to be considered when evaluating how often methods give expected ages on the geologic column.

Some of these are taken from John Woodmoreappe's article on the subject, but only when I have reason to believe the statements are also generally believed. First, many igneous formations span many periods, and so have little constraint on what period they could belong to. The same applies to intrusions. In addition, some kinds of rocks are not considered as suitable for radiometric dating, so these are typically not considered.

Furthermore, it is at least possible that anomalies are under-reported in the literature. Finally, the overwhelming majority of measurements on the fossil bearing geologic column are all done using one method, the K-Ar method. And let me recall that both potassium and argon are water soluble, and argon is mobile in rock. Thus the agreement found between many dates does not necessarily reflect an agreement between different methods, but rather the agreement of the K-Ar method with itself.

For example, if 80 percent of the measurements were done using K-Ar dating, and the other 20 percent gave random results, we still might be able to say that most of the measurements on a given strata agree with one another reasonably well.

So to me it seems quite conceivable that there is no correlation at all between the results of different methods on the geologic column, and that they have a purely random relationship to each other. Let us consider again the claim that radiometric dates for a given geologic period agree with each other.

I would like to know what is the exact or approximate information content of this assertion, and whether it could be or has been tested statistically.

It's not as easy as it might sound. Let's suppose that we have geologic periods G Let's only include rocks whose membership in the geologic period can be discerned independent of radiometric dating methods. Let's also only include rocks which are considered datable by at least one method, since some rocks I believe limestone are considered not to hold argon, for example.

Now, we can take a random rock from Gi. We will have to restrict ourselves to places where Gi is exposed, to avoid having to dig deep within the earth. Let's apply all known dating methods to Gi that are thought to apply to this kind of rock, and obtain ages from each one. Then we can average them to get an average age for this rock. We can also compute how much they differ from one another.

Now we have to be careful about lava flows -- which geologic period do they belong to? What about rocks that are thought not to have their clock reset, or to have undergone later heating episodes?

Just to make the test unbiased, we will assign altitude limits to each geologic period at each point on the earth's surface at least in principle and include all rocks within these altitude limits within Gi, subject to the condition that they are datable.

The measurements should be done in a double-blind manner to insure lack of unconscious bias. For each geologic period and each dating method, we will get a distribution of values. We will also get a distribution of averaged values for samples in each period. Now, some claim is being made about these distributions. It is undoubtedly being claimed that the mean values ascend as one goes up the geologic column.

It is also being claimed that the standard deviations are not too large. It is also being claimed that the different methods have distributions that are similar to one another on a given geologic period. The only correlation I know about that has been studied is between K-Ar and Rb-Sr dating on precambrian rock. And even for this one, the results were not very good. This was a reference by Hurley and Rand, cited in Woodmorappe's paper. As far as I know, no study has been done to determine how different methods correlate on the geologic column excluding precambrian rock.

The reason for my request is that a correlation is not implied by the fact that there are only 10 percent anomalies, or whatever. I showed that the fact that the great majority of dates come from one method K-Ar and the fact that many igneous bodies have very wide biostratigraphic limits, where many dates are acceptable, makes the percentage of anomalies irrelevant to the question I am asking. And since this agreement is the strongest argument for the reliability of radiometric dating, such an assumption of agreement appears to be without support so far.

The question of whether different methods correlate on the geologic column is not an easy one to answer for additional reasons. Since the bulk of K-Ar dates are generally accepted as correct, one may say that certain minerals are reliable if they tend to give similar dates, and unreliable otherwise. We can also say that certain formations tend to give reliable dates and others do not, depending on whether the dates agree with K-Ar dates.

Thus we can get an apparent correlation of different methods without much of a real correlation in nature. It's also possible for other matter to be incorporated into lava as it rises, without being thoroughly melted, and this matter may inherit all of its old correlated radiometric dates.

Coffin mentions that fission tracks can survive transport through lava, for example. It may also be that lava is produced by melting the bottom of continents and successively different layers are melted with time, or there could be a tendency for lighter isotopes to come to the top of magma chambers, making the lava there appear older. But anyway, I think it is important really to know what patterns appear in the data to try to understand if there is a correlation and what could be causing it.

Not knowing if anomalies are always published makes this harder. It is often mentioned that different methods agree on the K-T boundary, dated at about 65 million years ago. This is when the dinosaurs are assumed to have become extinct. This agreement of different methods is taken as evidence for a correlation between methods on the geologic column. One study found some correlated dates from bentonite that are used to estimate the date of the K-T boundary.

I looked up some information on bentonite. It is composed of little glass beads that come from volcanic ash. This is formed when lava is sticky and bubbles of gas in it explode. So these small particles of lava cool very fast.

The rapid cooling might mean that any enclosed argon is retained, but if not, the fact that this cooling occurs near the volcano, with a lot of argon coming out, should guarantee that these beads would have excess argon. As the gas bubble explodes, its enclosed argon will be rushing outward along with these tiny bubbles as they cool. This will cause them to retain argon and appear too old. In addition, the rapid cooling and the process of formation means that these beads would have Rb, Sr, U, and Pb concentrations the same as the lava they came from, since there is no chance for crystals to form with such rapid cooling.

radioactive dating game

So to assume that the K-Ar dates, Rb-Sr dates, and U-Pb dates all reflect the age of the lava, one would have to assume that this lava had no Sr, no Pb, and that all the argon escaped when the beads formed. Since the magma generally has old radiometric ages, I don't see how we could have magma without Pb or Sr. So to me it seems to be certain that these ages must be in error. Furthermore, the question arises whether bentonite always gives correlated ages, and whether these ages always agree with the accepted ages for their geologic period.

I believe that bentonite occurs in a number of formations of different geologic periods, so this could be checked. If bentonite does not always give correlate and correct ages, this calls into question its use for dating the K-T boundary. Back to top Note that if there are small pockets in crystals where both parent and daughter product can accumulate from the lava, then one can inherit correlated ages from the lava into minerals.

Thus even the existence of correlations is not conclusive evidence that a date is correct. Back to top If a date does not agree with the expected age of its geologic period, and no plausible explanation can be found, then the date is called anomalous. But if we really understand what is going on, then we should be able to detect discrepant dates as they are being measured, and not just due to their divergence from other dates.

Geologists often say that the percentage of anomalies is low. But there are quite a number of rather outstanding anomalies in radiometric dating that creationists have collected. These anomalies are reported in the scientific literature. For example, one isochron yielded a date of 10 billion years. A Rb-Sr isochron yielded a date of 34 billion years. K-Ar dates of 7 to 15 billion years have been recorded.

It's also not uncommon for two methods to agree and for the date to be discarded anyway. Samples with flat plateaus which should mean no added argon can give wrong dates. Samples giving no evidence of being disturbed can give wrong dates. Samples that give evidence of being disturbed can give correct dates. The number of dates that disagree with the expected ages is not insignificant.

I don't know what the exact percentage is. Many dates give values near the accepted ones. But even these often differ from one another by 10 or 20 percent. And quite a few other dates are often much, much farther off. Whatever is making some of these dates inaccurate could be making all of them inaccurate.

The Radiometric Dating Game

It's interesting to note that in a few cases, old radiometric dates are above young ones. The fact that different methods often give different dates is noted by geologists. Here are some quotes from http: Age estimates on a given geological stratum by different radiometric methods are often quite different sometimes by hundreds of millions of years.

There is not absolutely reliable long-term radiological "clock". The uncertainties inherent in radiometric dating are disturbing to geologists and evolutionists One example is the rocks from the Kaupelehu Flow, Hualalai Volcano in Hawaii which was known to have erupted in These rocks were dated by a variety of different methods.

Of 12 dates reported the youngest was million years and the oldest was 2. The dates average 1. Geologists explain the Kaupelehu date by the lava being cooled rapidly in deep ocean water and not being able to get rid of its enclosed argon.

Instead, the uncertainty grows as more and more data is accumulated In addition, Woodmorappe gives over sets of dates "that are in gross conflict with one another and with expected values for their indicated paleontological positions. This does not include dates from minerals that are thought to yield bad dates, or from igneous bodies with wide biostrategraphic ranges, where many dates are acceptable.

He states that the number of dates within range are less than the number of anomalies, except for the Cenozoic and Cretaceous. When one adds in the fact that many anomalies are unreported, which he gives evidence for, the true distribution is anyone's guess.

There have been criticisms of John Woodmorappe's study, but no one has given any figures from the literature for the true percentage of anomalies, with a definition of an anomaly, or the degree of correlation between methods. Steven Schimmrich's review of this study often concerns itself with John W's presentation of geologists explanation for anomalies, and not with the percentage of anomalies; the later is my main concern.

Here are a couple of more quotes about anomalies: The carbon age of the buried trees is only years, but some of the overlying volcanic material has a ,year potassium-argon age.

Still another evidence for problems with radiometric dating was given in a recent talk I attended by a man who had been an evolutionist and taken a course in radiometric dating. The teacher gave 14 assumptions of radiometric dating and said something like "If creationists got a hold of these, they could cut radiometric dating to pieces. Many sedimentary uranium ores are not.

On another point, if we can detect minerals that were not molten with the lava, as has been claimed, then this is one more reason why there should be no anomalies, and radiometric dating should be a completely solved problem. But that does not appear to be the case, at least especially on the geologic column. I'm not claiming that anomalous results are being hidden, just that the agreement of a mass of results, none of which has much claim to reliability, does not necessarily mean much.

Picking out a few cases where radiometric dates appear to be well-behaved reminds me of evolutionary biologists focusing on a few cases where there may be transitional sequences. It does not answer the overall question. And as I said above, I'm also interested to know how much of the fossil-bearing geologic column can be dated by isochrons, and how the dates so obtained compare to others.

Concerning K-Ar anomalies, here is a quote from Woodmorappe's paper cited above, p. Gerling et al called attention to some chlorites yielding K-Ar dates of 7 to 15 b. It had been noted that some minerals which yield such dates as beryl, cordierite, etc.

They also pointed out that for the anomalies to be accounted for by excess argon, unreasonably high partial pressures of Ar during crystallization would have to be required. They concluded by suggesting some unknown nuclear process which no longer operates to have generated the Ar. Here is another quote from Woodmorappe about isochrons, since some people think that mixing scenarios or other age-altering scenarios are unlikely: If this condition does not hold, invalid ages and intercepts are obtained.

Models yield isochron ages that are too high, too low, or in the future, sometimes by orders of magnitude. The fact that the only "valid" K-Ar isochrons are those for which the concentration of non-radiogenic argon Ar36 is constant, seems very unusual. This suggests that what is occuring is some kind of a mixing phenomenon, and not an isochron reflecting a true age. The following quote is from http: We have analyzed several devitrified glasses of known age, and all have yielded ages that are too young.

  • Radioactive Dating Game
  • Weekly Poem: ‘The Radioactive Dating Game’

Some gave virtually zero ages, although the geologic evidence suggested that devitrification took place shortly after the formation of a deposit. Back to top One of the main arguments in favor of radiometric dating is that so many dates agree with each other, that is, with the date expected for their geologic period. But it's not evident how much support this gives to radiometric dating. If a rock dates too old, one can say that the clock did not get reset. If it dates too young, one can invoke a later heating event.

Neither date would necessarily be seen as anomalous. If lava intrudes upon geologic period X, then any date for the lava of X or later will not be seen as anomalous. And even if the date is one or two geologic periods earlier, it may well be close enough to be accepted as non-spurious.

If one does not know the geologic period of a rock by other means, then of course one is likely to date it to find out, and then of course the date agrees with the geologic period and this will not be seen as anomalous. So it is difficult to know what would be a reasonable test for whether radiometric dating is reliable or not.

The percentage of published dates that are considered as anomalous has little bearing on the question. Back to top The issue about igneous bodies may need additional clarification. If a lava flow lies above geologic period A and below B, then allowable ages are anything at least as large as A and no larger than B. This is called the biostratigraphic limit of the flow. Now, according to Woodmorappe's citations, many lava flows have no such limits at all, and most of them have large limits.

For example, a flow lying on precambrian rock with nothing on top would have no limits on its dates. And such flows often have a large internal scatter of dates, but these dates are not considered as anomalies because of the unrestricted biostratigraphic limit. Other flows with wide biostratigraphic limits have weak restrictions on allowable dates. This is one reason why just reporting the percentage of anomalies has little meaning.

Thus these ages, though they generally have a considerable scatter, are not considered as anomalies. He cites another reference that most igneous bodies have wide biostrategraphic limits.

Thus just by chance, many dates will be considered within the acceptable ranges. Again, the percentage of anomalies means nothing for the reliability of radiometric dating. Now, igneous bodies can be of two types, extrusive and intrusive. Extrusive bodies are lava that is deposited on the surface. These cool quickly and have small crystals and form basalt. Intrusive bodies are deposited in the spaces between other rocks.

These cool more slowly and have larger crystals, often forming granite. Both of these tend on the average to have wide biostrategraphic limits, meaning that a large spread of ages will be regarded as non-anomalous. And if we recall that most radiometric dating is done of igneous bodies, one sees that the percentage of anomalies is meaningless.

Thus we really need some evidence that the different methods agree with each other. To make the case even stronger, "Many discrepant results from intrusives are rationalized away immediately by accepting the dates but reinterpreting the biostrategraphic bracket," according to John Woodmorappe. This of course means that the result is no longer anomalous, because the geologic period has been modified to fit the date.

Finally, the fact that the great majority of dates are from one method means that the general but not universal agreement of K-Ar dating with itself is sufficient to explain the small percentange of anomalies if it is small. Back to top Now, the point about agreement is that whatever figure is given about how often ages agree with the expected age, is consistent with the fact that there is no agreement at all between K-Ar and other methods, since so many measurements are done using K-Ar dating.

And one of the strongest arguments for the validity of radiometric dating is that the methods agree. So when one combines all of the above figures, the statement that there are only 10 percent anomalies or 5 percent or whatever, does not have any meaning any more. This statement is made so often as evidence for the reliability of radiometric dating, that the simple evidence that it has no meaning, is astounding to me. I don't object to having some hard evidence that there are real agreements between different methods on the geologic column, if someone can provide it.

The precambrian rock is less interesting because it could have a radiometric age older than life, but this is less likely for the rest of the geologic column.

It's not surprising that K-Ar dates often agree with the assumed dates of their geological periods, since the dates of the geological periods were largely inferred from K-Ar dating. By the way, Ar-Ar dating and K-Ar dating are essentially the same method, so between the two of them we obtain a large fraction of the dates being used.

Some information from an article by Robert H. History of the Radioisotope based Geologic Time Scale Before the discovery of radioactivity in the late nineteenth century, a geological time scale had been developed on the basis of estimates for the rates of geological processes such as erosion and sedimentation, with the assumption that these rates had always been essentially uniform.

On the basis of being unacceptably old, many geologists of the time rejected these early twentieth century determinations of rock age from the ratio of daughter to radioactive parent large.

Byincreased confidence in radioisotope dating techniques and the demands of evolution theory for vast amounts of time led to the establishment of an expanded geological time scale. The construction of this time scale was based on about radioisotope ages that were selected because of their agreement with the presumed fossil and geological sequences found in the rocks. Igneous rocks are particularly suited to K-Ar dating.

The crucial determiners are therefore volcanic extrusive igneous rocks that are interbedded with sediments, and intrusive igneous rocks that penetrate sediments. I found the following statement in an on-line non creationist reference, as follows: In rubidium-strontium dating, micas exclude strontium when they form, but accept much rubidium.

In uranium-lead U-Pb dating of zircon, the zircon is found to exclude initial lead almost completely. The Interpretation and Dating of the Geologic Record. Thus one would know that any strontium that is present had to come from the parent rubidium, so by computing the ratio and knowing the half life, one can compute the age. In general, when lava cools, various minerals crystallize out at different temperatures, and these minerals preferentially include and exclude various elements in their crystal structures.

So one obtains a series of minerals crystallizing out of the lava. Thus the composition of the lava continues to change, and later minerals can form having significantly different compositions than earlier ones.

Lava that cools on the surface of the earth is called extrusive. This type of lava cools quickly, leaving little time for crystals to form, and forms basalt.

Lava that cools underground cools much more slowly, and can form large crystals. This type of lava typically forms granite or quartz. A good general introduction to radiometric dating from an evolutionary perspective can be found at http: Back to top I admit this is a very beautiful theory.

radioactive dating game

This would seem to imply that the problem of radiometric dating has been solved, and that there are no anomalies. So if we take a lava flow and date several minerals for which one knows the daughter element is excluded, we should always get the exact same date, and it should agree with the accepted age of the geological period. I doubt it very much. If the radiometric dating problem has been solved in this manner, then why do we need isochrons, which are claimed to be more accurate?

The same question could be asked in general of minerals that are thought to yield good dates. Mica is thought to exclude Sr, so it should yield good Rb-Sr dates. But are dates from mica always accepted, and do they always agree with the age of their geologic period?

radioactive dating game

Indeed, there are a number of conditions on the reliability of radiometric dating. For example, for K-Ar dating, we have the following requirements: For this system to work as a clock, the following 4 criteria must be fulfilled: The decay constant and the abundance of K40 must be known accurately.

There must have been no incorporation of Ar40 into the mineral at the time of crystallization or a leak of Ar40 from the mineral following crystallization.

The system must have remained closed for both K40 and Ar40 since the time of crystallization. The relationship between the data obtained and a specific event must be known. The requirements for radiometric dating are stated in another way, at the web site http: The answer is that these methods, are far from infallible and are based on three arbitrary assumptions a constant rate of decay, an isolated system in which no parent or daughter element can be added or lost, and a known amount of the daughter element present initially.

Heating and deformation of rocks can cause these atoms to migrate, and water percolating through the rocks can transport these substances and redeposit them. These processes correspond to changing the setting of the clock hands. Not infrequently such resetting of the radiometric clocks is assumed in order to explain disagreements between different measurements of rock ages.

Some more quotes from the same source: In the lead-uranium systems both uranium and lead can migrate easily in some rocks, and lead volatilizes and escapes as a vapor at relatively low temperatures. It has been suggested that free neutrons could transform Pb first to Pb and then to Pb, thus tending to reset the clocks and throw thorium-lead and uranium-lead clocks completely off, even to the point of wiping out geological time.

Furthermore, there is still disagreement of 15 percent between the two preferred values for the U decay constant. Potassium volatilizes easily, is easily leached by water, and can migrate through the rocks under certain conditions.

Furthermore, the value of the decay constant is still disputed, although the scientific community seems to be approaching agreement. Historically, the decay constants used for the various radiometric dating systems have been adjusted to obtain agreement between the results obtained. Argon, the daughter substance, makes up about one percent of the atmosphere, which is therefore a possible source of contamination. However, since it is possible for argon to be formed in the rocks by cosmic radiation, the correction may also be in error.

Argon from the environment may be trapped in magma by pressure and rapid cooling to give very high erroneous age results.

Rubidium parent atoms can be leached out of the rock by water or volatilized by heat. All of these special problems as well as others can produce contradictory and erroneous results for the various radiometric dating systems. So we have a number of mechanisms that can introduce errors in radiometric dates. Heating can cause argon to leave a rock and make it look younger. In general, if lava was heated after the initial flow, it can yield an age that is too young. If the minerals in the lava did not melt with the lava, one can obtain an age that is too old.

Leaching can also occur; this involves water circulating in rock that can cause parent and daughter elements to enter or leave the rock and change the radiometric age.

Thus it is easy to rationalize any date that is obtained. If a date is too old, one can say that the mineral did not melt with the lava. Maybe it got included from surrounding rock as the lava flowed upward.

If the date is too young, one can say that there was a later heating event. One can also hypothesize that leaching occurred. But then it is claimed that we can detect leaching and heating. But how can we know that this claim is true, without knowing the history of rocks and knowing whether they have in fact experienced later heating or leaching?

The problems are compounded because many of the parent and daughter substances are mobile, to some extent. I believe that all parent substances are water soluble, and many of the daughter products as well. A few sources have said that Sr is mobile in rock to some extent. This could cause trouble for Rb-Sr dating.

In fact, some sources say that Sr and Ar have similar mobilities in rock, and Ar is very mobile. Especially the gaseous radiometric decay byproducts such as argon, radon, and helium are mobile in rock. So if a rock has tiny cracks permitting gas to enter or escape or permitting the flow of water, the radiometric ages could be changed substantially even without the rock ever melting or mixing.

Now, there is probably not much argon in a rock to start with. So the loss of a tiny amount of argon can have significant effects over long time periods. A loss of argon would make the rock look younger. In a similar way, argon could enter the rock from the air or from surrounding rocks and make it look older. And this can also happen by water flowing through the rock through tiny cracks, dissolving parent and daughter elements.

It would be difficult to measure the tiny changes in concentration that would suffice to make large changes in the radiometric ages over long time periods. I also question the assertion that argon, for example, is excluded from certain minerals when they crystallize and never enters later on. Geologists often say that ages that are too old are due to excess argon. So it must be possible for that excess argon to get in, even though the crystal is supposed to exclude it.

Here is one such reference, although this is to a mineral that does not exclude argon: In a few cases, argon ages older than that of the Earth which violate local relative age patterns have even been determined for the mineral biotite. Such situations occur mainly where old rocks have been locally heated, which released argon into pore spaces at the same time that new minerals grew.

Under favourable circumstances the isochron method may be helpful, but tests by other techniques may be required. For example, the rubidium-strontium method would give a valid isotopic age of the biotite sample with inherited argon. For example, different kinds of quartz have different colors due to various impurities that are included but not part of the repetitive unit of the quartz crystal. So even if the crystal excludes the daughter element, it could be present in impurities.

Thus crystals, as they form, may have tiny imperfections that accept parent and daughter products in the same ratios as they occur in the lava, so one can inherit ages from the lava into minerals in this way.

It is also possible that parent and daughter elements could be present in boundaries between regular crystal domains. There can also be argon or other daughter products added from the air or from other rocks. One could say that we can detect whether the daughter is embedded in the crystal structure or not. But this would require an atom by atom analysis, which I do not believe is practical.

Back to top Since K-Ar potassium-argon dating is one of the most prevalent techniques, some special commentary about it is in order. Potassium is about 2. Argon is about 3. This is about one ten millionth of the mass of the rock, a very tiny percentage. And yet, with a large amount of argon in the air and also filtering up from rocks below, and with excess argon in lava, with argon and potassium water soluble, and argon mobile in rock, we are still expecting this wisp of argon to tell us how old the rock is!

The percentage of Ar40 is even less for younger rocks. For example, it would be about one in million for rocks in the vicinity of 57 million years old.

To get one part in 10 million of argon in a rock in a thousand years, we would only need to get one part in 10 billion entering the rock each year. This would be less than one part in a trillion entering the rock each day, on the average. This would suffice to give a rock having an average concentration of potassium, a computed potassium-argon age of over million years!

We can also consider the average abundance of argon in the crust. This implies a radiometric age of over 4 billion years. So a rock can get a very old radiometric age just by having average amounts of potassium and argon. It seems reasonable to me that the large radiometric ages are simply a consequence of mixing, and not related to ages at all, at least not necessarily the ages of the rocks themselves. The fact that not all of the argon is retained would account for smaller amounts of argon near the surface, as I will explain below.

This could happen because of properties of the magma chambers, or because of argon being given off by some rocks and absorbed by others. The rates of exchange that would mess up the dates are very tiny.

It seems to me to be a certainty that water and gas will enter rocks through tiny cracks and invalidate almost all radiometric ages.

In fact, it probably rises to the top of the magma, artificially increasing its concentration there. Now, some rocks in the crust are believed not to hold their argon, so this argon will enter the spaces between the rocks. Leaching also occurs, releasing argon from rocks. Heating of rocks can also release argon. Argon is released from lava as it cools, and probably filters up into the crust from the magma below, along with helium and other radioactive decay products.

All of this argon is being produced and entering the air and water in between the rocks, and gradually filtering up to the atmosphere. But we know that rocks absorb argon, because correction factors are applied for this when using K-Ar dating. So this argon that is being produced will leave some rocks and enter others.

The partial pressure of argon should be largest deepest in the earth, and decrease towards the surface. This would result in larger K-Ar ages lower down, but lower ages nearer the surface. As for K-Ar dating, here is a quote given above: Now, argon is very soluble in magma, which can hold a lot of it: After the material was quenched, the researchers measured up to 0. This is from a paper by Austin available at http: This paper also discusses Mount St.

- Radiometric Dating Game -

Helens K-Ar dating, and historic lava flows and their excess argon. So magma holds tremendous amounts of argon. Now, consider an intrusive flow, which cools within the earth. All its argon will either remain inside and give an old age to the flow, or will travel through surrounding rock, where it can be absorbed by other rocks.

So magma should have at least 20 times as much argon as a rock million years old by K-Ar dating. In fact, the argon in the magma may well be even higher, as it may concentrate near the top. This amount of argon is enough to raise 20 times the volume of magma to a K-Ar age of million years, and probably times the volume of the magam to an age of 57 million years.

So one sees that there is a tremendous potential for age increases in this way. It is not necessary for this increase in age to happen all at once; many events of this nature can gradually increase the K-Ar ages of rocks. In general, older rocks should have more argon because they have been subject to more exposure to such argon, but their true age is not necessarily related to their K-Ar radiometric age. We can also consider that most volcanoes and earthquakes occur at boundaries between plates, so if the lava has flowed before, it is likely to flow again nearby, gradually increasing the age.

I suppose earthquakes could also allow the release of argon from the magma. Other mechanisms include dissolving of rock, releasing its argon, fracturing of rock, with release of argon, argon from cooling lava under water entering the water and entering other rocks, and argon from cooling lave entering subterranean water and being transported to other rock. There are so many mechanisms that it is hard to know what pattern to expect, and one does not need to rely on any one of them such as more argon in the magma in the past to account for problems in K-Ar dating.

Since even rocks with old K-Ar dates still absorb more argon from the atmosphere in short time periods, it follows that rocks should absorb quite a bit of argon over long time periods, especially at higher pressures. In fact, if a rock can absorb only a ten millionth part of argon, that should be enough to raise its K-Ar age to over million years, assuming an average amounts of potassium. Also, as the rock deforms under pressure, more cracks are likely to form and old ones are likely to close up, providing more opportunity for argon and other gases to enter.

I mentioned a number of possibilities that could cause K-Ar dates to be much older than the true ages of the rocks. Here is another way that K-Ar dates can be too old: If we assume the earth went through a catastrophe recently, then the crustal plates might have been agitated, permitting lava and argon to escape from the magma.

Thus a lot of argon would be filtering up through the crust. As intrusive flows of lava cooled inside the crust, they would have been in an environment highly enriched in argon, and thus would not have gotten rid of much of their argon. Thus they would have hardened with a lot of argon inside. This would make them appear old. The same goes for extrusive flows on the surface, since argon would be filtering up through the earth and through the lava as it cooled.

The following was sent to me by a friend: In areas where tremendous tectonic activity has taken place, highly discordant values for the ages are obtained. The difficulties associated are numerous and listed as follows: There seems to be a great deal of question regarding the branching ratio for K40 into Ar40 and Ca But the value is not really known. The observed value is between 0. There is far too much Ar40 in the earth for more than a small fraction of it to have been formed by radioactive decay of K This is true even if the earth really is 4.

In the atmosphere of the earth, Ar40 constitutes This is around times the amount that would be generated by radioactive decay over the age of 4. Certainly this is not produced by an influx from outer space. Thus, a large amount of Ar40 was present in the beginning. Since geochronologists assume that errors due to presence of initial Ar40 are small, their results are highly questionable. Argon diffuses from mineral to mineral with great ease.

It leaks out of rocks very readily and can move from down deep in the earth, where the pressure is large, and accumulate in an abnormally large amount in the surface where rock samples for dating are found.

They would all have excess argon due to this movement. This makes them appear older. Rocks from deeper in the crust would show this to a lesser degree. Also, since some rocks hold the Ar40 stronger than others, some rocks will have a large apparent age, others smaller ages, though they may actually be the same age.

If you were to measure Ar40 concentration as function of depth, you would no doubt find more of it near the surface than at deeper points because it migrates more easily from deep in the earth than it does from the earth into the atmosphere. It is easy to see how the huge ages are being obtained by the KAr40 radiometric clock, since surface and near-surface samples will contain argon due to this diffusion effect.

Some geochronologists believe that a possible cause of excess argon is that argon diffuses into mineral progressively with time. Significant quantities of argon may be introduced into a mineral even at pressures as low as one bar. If such [excessive] ages as mentioned above are obtained for pillow lavas, how are those from deep-sea drilling out in the Atlantic where sea-floor spreading is supposed to be occurring?

Potassium is found to be very mobile under leaching conditions. Ground-water and erosional water movements could produce this effect naturally.

Rocks in areas having a complex geological history have many large discordances. In a single rock there may be mutually contaminating, potassium- bearing minerals. There is some difficulty in determining the decay constants for the KAr40 system. Geochronologists use the branching ratio as a semi-emperical, adjustable constant which they manipulate instead of using an accurate half-life for K A number of recent lava flows within the past few hundred years yield potassium-argon ages in the hundreds of thousands of years range.

This indicates that some excess argon is present. Where is it coming from? And how do we know that it could not be a much larger quantity in other cases? If more excess argon were present, then we could get much older ages.

It is true that an age difference in the hundreds of thousands of years is much too small to account for the observed K-Ar ages. Second, there may have been a lot more more argon in the magma in the past, and with each eruption, the amount decreased. So there would have been a lot more excess argon in the past, leading to older ages. For rocks that are being dated, contamination with atmospheric argon is a persistent problem that is mentioned a number of times. Thus it is clear that argon enters rock easily.

It is claimed that we can know if a rock has added argon by its spectrum when heated; different temperatures yield different fractions of argon. It is claimed that the argon that enters from the atmosphere or other rocks, is less tightly bound to the crystal lattice, and will leave the rock at a lower temperature.

But how do we know what happens over thousands of years? It could be that this argon which is initially loosely bound if it is so initially gradually becomes more tightly bound by random thermal vibrations, until it becomes undetectable by the spectrum technique. The fact that rock is often under high pressure might influence this process, as well.

Back to top Thus there are a number of sources of error. We now consider whether they can explain the observed dates. In general, the dates that are obtained by radiometric methods are in the hundreds of millions of years range. That is, we can get both parent and daughter elements from the magma inherited into minerals that crystallize out of lava, making these minerals look old.

Since the magma has old radiometric dates, depending on how much the clock gets reset, the crust can end up with a variety of younger dates just by partially inheriting the dates of the magma.

Thus any method based on simple parent to daughter ratios such as Rb-Sr dating is bound to be unreliable, since there would have to be a lot of the daughter product in the magma already. Even the initial ratios of parent and daughter elements in the earth do not necessarily indicate an age as old as 4.

Radioactive decay would be faster in the bodies of stars, which is where scientists assume the heavy elements formed. Imagine a uranium nucleus forming by the fusion of smaller nucleii. At the moment of formation, as two nucleii collide, the uranium nucleus will be somewhat unstable, and thus very likely to decay into its daughter element.

The same applies to all nucleii, implying that one could get the appearance of age quickly. Of course, the thermonuclear reactions in the star would also speed up radioactive decay. But isochrons might be able to account for pre-existing daughter elements. Furthermore, some elements in the earth are too abundant to be explained by radioactive decay in 4. Some are too scarce such as helium. Back to top In general, potassium-argon dates appear to be older the deeper one goes in the crust of the earth.

We now consider possible explanations for this. There are at least a couple of mechanisms to account for this. In volcano eruptions, a considerable amount of gas is released with the lava.

This gas undoubtedly contains a significant amount of argon Volcanos typically have magma chambers under them, from which the eruptions occur. It seems reasonable that gas would collect at the top of these chambers, causing artificially high K-Ar radiometric ages there. In addition, with each successive eruption, some gas would escape, reducing the pressure of the gas and reducing the apparent K-Ar radiometric age. Thus the decreasing K-Ar ages would represent the passage of time, but not necessarily related to their absolute radiometric ages.

As a result, lava found in deeper layers, having erupted earlier, would generally appear much older and lava found in higher layers, having erupted later, would appear much younger. This could account for the observed distribution of potassium-argon dates, even if the great sedimantary layers were laid down very recently.

In addition, lava emerging later will tend to be hotter, coming from deeper in the earth and through channels that have already been warmed up. This lava will take longer to cool down, giving more opportunity for enclosed argon to escape and leading to younger radiometric ages. A discussion of these mechanisms may be found at the Geoscience Research Institute site.

Another factor is that rocks absorb argon from the air. It is true that this can be accounted for by the fact that argon in the air has Ar36 and Ar40, whereas only Ar40 is produced by K-Ar decay. But for rocks deep in the earth, the mixture of argon in their environment is probably much higher in Ar40, since only Ar40 is produced by radioactive decay. As these rocks absorb argon, their radiometric ages would increase. This would probably have a larger effect lower down, where the pressure of argon would be higher.

Or it could be that such a distribution of argon pressures in the rocks occurred at some time in the past. This would also make deeper rocks tend to have older radiometric ages. Recent lava flows often yield K-Ar ages of aboutyears.

This shous that they contain some excess argon, and not all of it is escaping. If they contained a hundred times more excess argon, their K-Ar ages would be a hundred times greater, I suppose. And faster cooling could increase the ages by further large factors. I also read of a case where a rock was K-Ar dated at 50 million years, and still susceptible to absorbing argon from the air.

This shows that one might get radiometric ages of at least 50 million years in this way by absorbing Ar40 deep in the earth without much Ar36 or Ar38 present. If the pressure of Ar40 were greater, one could obtain even greater ages. Yet another mechanism that can lead to decreasing K-Ar ages with time is the following, in a flood model: One can assume that at the beginning of the flood, many volcanoes erupted and the waters became enriched in Ar Then any lava under water would appear older because its enclosed Ar40 would have more trouble escaping.

As time passed, this Ar40 would gradually pass into the atmosphere, reducing this effect and making rocks appear younger. In addition, this would cause a gradient of Ar40 concentrations in the air, with higher concentrations near the ground. This also could make flows on the land appear older than they are, since their Ar40 would also have a harder time escaping.

Back to top Let us consider the question of how much different dating methods agree on the geologic column, and how many measurements are anomalous, since these points are often mentioned as evidences of the reliability of radiometric dating.

It takes a long time to penetrate the confusion and find out what is the hard evidence in this area. In the first place, I am not primarily concerned with dating meteorites, or precambrian rocks. What I am more interested in is the fossil-bearing geologic column of Cambrian and later age. Now, several factors need to be considered when evaluating how often methods give expected ages on the geologic column.

First, many igneous formations span many periods, and so have little constraint on what period they could belong to. The same applies to intrusions. In addition, some kinds of rocks are not considered as suitable for radiometric dating, so these are typically not considered. Furthermore, it is at least possible that anomalies are under-reported in the literature.

Finally, the overwhelming majority of measurements on the fossil bearing geologic column are all done using one method, the K-Ar method. And let me recall that both potassium and argon are water soluble, and argon is mobile in rock.

Thus the agreement found between many dates does not necessarily reflect an agreement between different methods, but rather the agreement of the K-Ar method with itself. For example, if 80 percent of the measurements were done using K-Ar dating, and the other 20 percent gave random results, we still might be able to say that most of the measurements on a given strata agree with one another reasonably well.

So to me it seems quite conceivable that there is no correlation at all between the results of different methods on the geologic column, and that they have a purely random relationship to each other. Let us consider again the claim that radiometric dates for a given geologic period agree with each other. I would like to know what is the exact or approximate information content of this assertion, and whether it could be or has been tested statistically.

Now, we can take a random rock from Gi. We will have to restrict ourselves to places where Gi is exposed, to avoid having to dig deep within the earth. Then we can average them to get an average age for this rock.

We can also compute how much they differ from one another. Now we have to be careful about lava flows -- which geologic period do they belong to? What about rocks that are thought not to have their clock reset, or to have undergone later heating episodes? The measurements should be done in a double-blind manner to insure lack of unconscious bias. For each geologic period and each dating method, we will get a distribution of values. We will also get a distribution of averaged values for samples in each period.

Now, some claim is being made about these distributions. It is undoubtedly being claimed that the mean values ascend as one goes up the geologic column.

It is also being claimed that the standard deviations are not too large. It is also being claimed that the different methods have distributions that are similar to one another on a given geologic period. The only correlation I know about that has been studied is between K-Ar and Rb-Sr dating on precambrian rock. And even for this one, the results were not very good. As far as I know, no study has been done to determine how different methods correlate on the geologic column excluding precambrian rock.

The reason for my request is that a correlation is not implied by the fact that there are only 10 percent anomalies, or whatever. I showed that the fact that the great majority of dates come from one method K-Ar and the fact that many igneous bodies have very wide biostratigraphic limits, where many dates are acceptable, makes the percentage of anomalies irrelevant to the question I am asking.

And since this agreement is the strongest argument for the reliability of radiometric dating, such an assumption of agreement appears to be without support so far. The question of whether different methods correlate on the geologic column is not an easy one to answer for additional reasons. Since the bulk of K-Ar dates are generally accepted as correct, one may say that certain minerals are reliable if they tend to give similar dates, and unreliable otherwise.

We can also say that certain formations tend to give reliable dates and others do not, depending on whether the dates agree with K-Ar dates.

Thus we can get an apparent correlation of different methods without much of a real correlation in nature. Coffin mentions that fission tracks can survive transport through lava, for example.

It may also be that lava is produced by melting the bottom of continents and successively different layers are melted with time, or there could be a tendency for lighter isotopes to come to the top of magma chambers, making the lava there appear older.

But anyway, I think it is important really to know what patterns appear in the data to try to understand if there is a correlation and what could be causing it. Not knowing if anomalies are always published makes this harder. It is often mentioned that different methods agree on the K-T boundary, dated at about 65 million years ago.

This is when the dinosaurs are assumed to have become extinct. This agreement of different methods is taken as evidence for a correlation between methods on the geologic column. One study found some correlated dates from bentonite that are used to estimate the date of the K-T boundary. I looked up some information on bentonite. It is composed of little glass beads that come from volcanic ash.

This is formed when lava is sticky and bubbles of gas in it explode. So these small particles of lava cool very fast. The rapid cooling might mean that any enclosed argon is retained, but if not, the fact that this cooling occurs near the volcano, with a lot of argon coming out, should guarantee that these beads would have excess argon.

As the gas bubble explodes, its enclosed argon will be rushing outward along with these tiny bubbles as they cool.