# Radio metric dating

### Radiometric Dating Does Work! | NCSE

This document discusses the way radiometric dating and stratigraphic principles are used to establish the conventional geological time scale. Principles of Radiometric Dating. Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom. Radiometric dating is used to estimate the age of rocks and other objects based on the fixed decay rate of radioactive isotopes. Learn about.

For example lavas dated by K-Ar that are historic in age, usually show 1 to 2 my old ages due to trapped Ar. Such trapped Ar is not problematical when the age of the rock is in hundreds of millions of years.

The dating equation used for K-Ar is: Some of the problems associated with K-Ar dating are Excess argon. This is only a problem when dating very young rocks or in dating whole rocks instead of mineral separates. Minerals should not contain any excess Ar because Ar should not enter the crystal structure of a mineral when it crystallizes.

Thus, it always better to date minerals that have high K contents, such as sanidine or biotite. If these are not present, Plagioclase or hornblende. If none of these are present, then the only alternative is to date whole rocks.

## Radiometric dating

Some 40Ar could be absorbed onto the sample surface. This can be corrected for. Most minerals will lose Ar on heating above oC - thus metamorphism can cause a loss of Ar or a partial loss of Ar which will reset the atomic clock. If only partial loss of Ar occurs then the age determined will be in between the age of crystallization and the age of metamorphism. If complete loss of Ar occurs during metamorphism, then the date is that of the metamorphic event.

In uranium—lead datingthe concordia diagram is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample.

For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate. This normally involves isotope-ratio mass spectrometry. For instance, carbon has a half-life of 5, years. After an organism has been dead for 60, years, so little carbon is left that accurate dating cannot be established.

### Radiometric Dating and the Geological Time Scale

On the other hand, the concentration of carbon falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades. Closure temperature If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusionsetting the isotopic "clock" to zero.

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy.

At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature.

This field is known as thermochronology or thermochronometry. The age is calculated from the slope of the isochron line and the original composition from the intercept of the isochron with the y-axis. The equation is most conveniently expressed in terms of the measured quantity N t rather than the constant initial value No.

The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its closure temperature. This is well-established for most isotopic systems. Plotting an isochron is used to solve the age equation graphically and calculate the age of the sample and the original composition.

Modern dating methods[ edit ] Radiometric dating has been carried out since when it was invented by Ernest Rutherford as a method by which one might determine the age of the Earth. In the century since then the techniques have been greatly improved and expanded. The mass spectrometer was invented in the s and began to be used in radiometric dating in the s. It operates by generating a beam of ionized atoms from the sample under test.

The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as " Faraday cups ", depending on their mass and level of ionization. On impact in the cups, the ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams.

Uranium—lead dating method[ edit ] Main article: Uranium—lead dating A concordia diagram as used in uranium—lead datingwith data from the Pfunze BeltZimbabwe. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years.

Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert.

## Radiometric Dating and the Geological Time Scale

Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of the event. This can be seen in the concordia diagram, where the samples plot along an errorchron straight line which intersects the concordia curve at the age of the sample. Samarium—neodymium dating method[ edit ] Main article: Samarium—neodymium dating This involves the alpha decay of Sm to Nd with a half-life of 1.

The third is that all three meteorites were dated by more than one method — two methods each for Allende and Guarena, and four methods for St Severin. This is extremely powerful verification of the validity of both the theory and practice of radiometric dating.

In the case of St Severin, for example, we have 4 different natural clocks actually 5, for the Pb-Pb method involves 2 different radioactive uranium isotopeseach running at a different rate and each using elements that respond to chemical and physical conditions in much different ways. And yet, they all give the same result to within a few percent.

Is this a remarkable coincidence? Scientists have concluded that it is not; it is instead a consequence of the fact that radiometric dating actually works and works quite well. Creationists who wants to dispute the conclusion that primitive meteorites, and therefore the solar system, are about 4.

The K-T Tektites One of the most exciting and important scientific findings in decades was the discovery that a large asteroid, about 10 kilometers diameter, struck the earth at the end of the Cretaceous Period. The collision threw many tons of debris into the atmosphere and possibly led to the extinction of the dinosaurs and many other life forms. The fallout from this enormous impact, including shocked quartz and high concentrations of the element iridium, has been found in sedimentary rocks at more than locations worldwide at the precise stratigraphic location of the Cretaceous-Tertiary K-T boundary Alvarez and Asaro ; Alvarez We now know that the impact site is located on the Yucatan Peninsula.

Measuring the age of this impact event independently of the stratigraphic evidence is an obvious test for radiometric methods, and a number of scientists in laboratories around the world set to work. In addition to shocked quartz grains and high concentrations of iridium, the K-T impact produced tektites, which are small glass spherules that form from rock that is instantaneously melted by a large impact.

The K-T tektites were ejected into the atmosphere and deposited some distance away. Tektites are easily recognizable and form in no other way, so the discovery of a sedimentary bed the Beloc Formation in Haiti that contained tektites and that, from fossil evidence, coincided with the K-T boundary provided an obvious candidate for dating.

Scientists from the US Geological Survey were the first to obtain radiometric ages for the tektites and laboratories in Berkeley, Stanford, Canada, and France soon followed suit. The results from all of the laboratories were remarkably consistent with the measured ages ranging only from Similar tektites were also found in Mexico, and the Berkeley lab found that they were the same age as the Haiti tektites.

The K-T boundary is recorded in numerous sedimentary beds around the world. Numerous thin beds of volcanic ash occur within these coals just centimeters above the K-T boundary, and some of these ash beds contain minerals that can be dated radiometrically.

Since both the ash beds and the tektites occur either at or very near the K-T boundary, as determined by diagnostic fossils, the tektites and the ash beds should be very nearly the same age, and they are Table 2. There are several important things to note about these results. First, the Cretaceous and Tertiary periods were defined by geologists in the early s.

The boundary between these periods the K-T boundary is marked by an abrupt change in fossils found in sedimentary rocks worldwide. Its exact location in the stratigraphic column at any locality has nothing to do with radiometric dating — it is located by careful study of the fossils and the rocks that contain them, and nothing more.

Furthermore, the dating was done in 6 different laboratories and the materials were collected from 5 different locations in the Western Hemisphere. And yet the results are the same within analytical error. These flows buried and destroyed Pompeii and other nearby Roman cities. We know the exact day of this eruption because Pliny the Younger carefully recorded the event. They separated sanidine crystals from a sample of one of the ash flows.

Incremental heating experiments on 12 samples of sanidine yielded 46 data points that resulted in an isochron age of 94 years. The actual age of the flow in was years. Is this just a coincidence?

- Radiometric Dating Does Work!
- How Old Is That Rock? Roll the Dice & Use Radiometric Dating to Find Out

No — it is the result of extremely careful analyses using a technique that works. This is not the only dating study to be done on an historic lava flow. Two extensive studies done more than 25 years ago involved analyzing the isotopic composition of argon in such flows to determine if the source of the argon was atmospheric, as must be assumed in K-Ar dating Dalrymple26 flows; Krummenacher19 flows.

Note, however, that even an error of 0. Summary In this short paper I have briefly described 4 examples of radiometric dating studies where there is both internal and independent evidence that the results have yielded valid ages for significant geologic events. It is these studies, and the many more like them documented in the scientific literature, that the creationists need to address before they can discredit radiometric dating.

Their odds of success are near zero.